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Abstract: This paper presents a hybrid ARIMA-CNN-LSTM model for accurate regional power load forecasting. The model
leverages the ARIMA model’s ability to capture linear trends and the CNN-LSTM network’s strength in modeling nonlinear
dependencies and temporal patterns. Experimental results demonstrate that the hybrid model outperforms the standalone
ARIMA model, achieving significant improvements in forecasting accuracy. With an RMSE of 3504.08, an MAE of 1466.66,
and an R-squared value of 0.9902, the hybrid model proves to be an effective tool for energy management and grid planning.
Its balance between accuracy and computational efficiency makes it suitable for real-time forecasting applications.
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1. Introduction
Accurate forecasting of regional power load is a critical

component in the operation and planning of modern power
systems. With the rapid development of renewable energy
and the increasing complexity of load patterns, traditional
forecasting methods are often inadequate in capturing the
intricate dynamics of power load variations. As a result,
there is a growing need for more sophisticated models that
can effectively predict power load with higher precision.
Time series forecasting models such as ARIMA

(AutoRegressive Integrated Moving Average) have been
widely used in power load prediction due to their statistical
reliability and simplicity. However, these models often
struggle with non-linear patterns and fail to capture
complex temporal dependencies inherent in power load data.
To address these limitations, deep learning models,
particularly those based on Convolutional Neural Networks
(CNN) and Long Short-Term Memory (LSTM) networks,
have been introduced. CNNs excel in feature extraction by
capturing local patterns in the data, while LSTM networks
are well-suited for modeling long-term dependencies,
making them ideal for time series prediction.
Despite the success of CNN and LSTM models in various

applications, their direct application to power load
forecasting may still result in suboptimal performance due
to model residuals— errors that persist after the primary
model has made its prediction. These residuals can be
attributed to the models’ inability to fully capture the
underlying stochastic properties of the load data. Therefore,
a hybrid approach that combines the strengths of traditional
statistical methods and advanced deep learning techniques
presents a promising solution.
This study proposes a novel hybrid model that integrates

ARIMA, CNN, and LSTM with a residual correction
mechanism. The proposed model first applies the ARIMA
model to capture linear trends in the power load data. The
residuals generated by the ARIMA model are then passed
through a CNN-LSTM network to capture non-linear
patterns and long-term dependencies. Finally, the model
corrects the residuals, thereby enhancing the overall
prediction accuracy.
The primary objective of this research is to develop a

robust forecasting model that not only improves prediction
accuracy but also addresses the shortcomings of existing
approaches. By leveraging the complementary strengths of
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ARIMA and CNN-LSTM models, this study aims to
provide a more reliable tool for power load forecasting,
which is essential for ensuring the stability and efficiency of
power systems.

2. Related Work
In recent years, power load forecasting has become a

prominent topic in power system research. With the
development of data-driven technologies, more scholars have
explored hybrid models and deep learning methods to
improve forecasting accuracy. Existing studies indicate that
traditional time series models like ARIMA exhibit certain
limitations when applied to power load forecasting, while the
integration of deep learning methods can effectively capture
nonlinear features in the data, thus enhancing prediction
performance.
Yang et al. (2024) combined decomposition strategies with

attention-based long short-term memory networks for
multi-step ultra-short-term agricultural power load
forecasting, showing the superiority of such hybrid models in
handling complex time series tasks[1]. Similarly, Fan et al.
adopted a hybrid model that integrates deep learning with
feature extraction statistical techniques for short-term power
load forecasting, further enhancing the model ’ s prediction
accuracy[2].
Research combining various technological approaches is

also extensive. Zou et al. (2023) utilized an integrated
approach of variational mode decomposition and
TCN-BiGRU for short-term power load forecasting, showing
the potential of multi-model integration[3]. Liu and Chen
(2023) conducted a study on power load forecasting based on
an improved Harris Hawk optimization algorithm, further
proving the role of optimization algorithms in enhancing
model performance[4].
In ultra-short-term power load forecasting, Pang et al.

(2023) adopted a stochastic configuration network and
empirical mode decomposition-based method, demonstrating
its effectiveness in handling extremely short time frame
forecasts[5]. Wan et al. (2023) combined CNN-LSTM with an
attention mechanism for short-term power load forecasting in
combined heat and power systems, achieving significant
predictive results[6].
Moreover, significant progress has been made in machine

learning model ensembles for mixed power load forecasting
across multiple time horizons. Giamarelos et al. (2023)
proposed an ensemble method for power load forecasting
across different time granularities, showcasing its predictive
capabilities[7]. Cheng et al. (2023) introduced a hybrid feature
pyramid CNN-LSTM model with seasonal inflection month
correction, effectively improving medium- and long-term
power load forecasting accuracy[8].
Overall, current research indicates that combining various

models and techniques significantly enhances the accuracy of
power load forecasting. These findings provide a solid
theoretical foundation for the stable operation and
optimization of power systems, while also pointing the way

forward for future developments.

3. Methodology
3.1. Research Design

The primary goal of this study is to develop a robust
forecasting model for regional power load, leveraging both
statistical and deep learning techniques to improve prediction
accuracy. To achieve this, we design a hybrid approach that
integrates the strengths of ARIMA (AutoRegressive
Integrated Moving Average) and deep learning models,
specifically Convolutional Neural Networks (CNN) and
Long Short-Term Memory (LSTM) networks, complemented
by a residual correction mechanism.

2.2. Data Source

The dataset utilized in this study provides a comprehensive
record of power consumption for a specific region, recorded
at 15-minute intervals. This dataset consists of two primary
columns: 'Time' and 'Power Load'. The 'Time' column records
each data point with precise timestamps in the format
'YYYY-MM-DD HH:MM', while the 'Power Load' column
quantifies the electricity consumption at each corresponding
time point in kilowatts (kW). The data spans from January 1,
2020, to August 31, 2023, covering a total of 128,155 entries.
This dataset exhibits clear fluctuations in power

consumption, typically associated with daily human activities
and seasonal variations, such as the differences between
weekdays and weekends, or daytime and nighttime usage.
Notably, the dataset is free from missing values, ensuring the
continuity and accuracy necessary for reliable analysis. The
data is sourced from Alibaba's Tianchi Laboratory, a
renowned platform for data science competitions and
research. This extensive and detailed dataset serves as a solid
foundation for various applications, including power load
forecasting, grid planning optimization, and enhancing
energy management efficiency.

2.3. Model Construction

The model construction in this study involves developing a
hybrid approach that integrates the ARIMA (AutoRegressive
Integrated Moving Average) model with a CNN-LSTM
(Convolutional Neural Network - Long Short-Term Memory)
network. The hybrid model is designed to leverage the
strengths of both traditional statistical methods and modern
deep learning techniques to improve the accuracy of regional
power load forecasting.

2.3.1.ARIMAModel for Initial Prediction
The ARIMA model is employed to capture the linear

patterns and trends within the time series data. ARIMA is
well-suited for modeling time series data where linear
relationships dominate and can provide a strong baseline for
prediction.

The ARIMA model is configured by selecting optimal
parameters for autoregression (p), differencing (d), and
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moving average (q). These parameters are determined using
the Akaike Information Criterion (AIC) and Bayesian
Information Criterion (BIC) to ensure the model's
effectiveness. The ARIMA model is then trained on the
historical power load data, and predictions are generated for
the entire dataset. The residuals, which are the differences
between the actual power load values and the ARIMA
model's predictions, are calculated and used as input for
further modeling.

2.3.2. Residual Correction with CNN-LSTM
While ARIMA captures linear trends, it may not fully

account for the nonlinearities and complex temporal
dependencies present in the data. To address this, the
residuals from the ARIMA model are passed through a
CNN-LSTM network. This deep learning model is designed
to correct the residuals, thereby enhancing the overall
accuracy of the predictions.
CNN Layer: The CNN layer is utilized to extract local

features from the residuals. This layer applies convolutional
filters to detect patterns within short sequences of residual
data, effectively capturing local dependencies.
LSTM Layer: Following the CNN layer, the LSTM layer

is employed to capture long-term dependencies in the time
series data. LSTM networks are particularly effective at
retaining information over extended sequences, making them
ideal for time series forecasting tasks.
Output Layer: After processing through the CNN and

LSTM layers, the network generates corrected predictions,
which are then combined with the initial ARIMA predictions
to produce the final forecast.

2.3.3. Training and Optimization
The CNN-LSTM model is trained on the residuals using

the backpropagation algorithm, with the aim of minimizing
the mean squared error (MSE) between the predicted and
actual residuals. The model's hyperparameters, such as the
number of convolutional filters, LSTM units, and learning
rate, are fine-tuned to optimize performance.
The performance of the hybrid ARIMA-CNN-LSTM

model is evaluated against the baseline ARIMA model and
other conventional methods. Metrics such as Mean Absolute
Error (MAE), Root Mean Squared Error (RMSE), and
R-squared (R ² ) are used to assess the accuracy of the
forecasts.
This hybrid approach effectively combines the strengths of

ARIMA in capturing linear trends and CNN-LSTM in
modeling nonlinearities and temporal dependencies, resulting
in a robust model capable of accurate regional power load
forecasting.

2.4. Residual Correction Mechanism

The residual correction mechanism in the hybrid
ARIMA-CNN-LSTM model is designed to enhance
forecasting accuracy by addressing the limitations of the
ARIMA model in capturing nonlinear patterns and long-term
dependencies. After generating initial predictions with

ARIMA, the residuals (errors) are calculated as the
difference between actual and predicted values. These
residuals are then fed into a CNN-LSTM network:
CNN Layer: The CNN layer extracts local features from

the residuals, identifying patterns that ARIMAmissed.
LSTM Layer: The LSTM layer captures long-term

dependencies in the residuals, modeling how these errors
evolve over time.
Final Correction: The corrected residuals produced by the

CNN-LSTM network are added to the ARIMA predictions,
resulting in a more accurate final forecast.
This mechanism effectively refines the initial ARIMA

predictions by incorporating complex patterns, significantly
improving the overall model performance.

4. Experimental results and analysis
The experimental results and analysis section aims to

evaluate the performance of the hybrid ARIMA-CNN-LSTM
model in forecasting regional power load data. This section
presents a detailed examination of the model ’ s ability to
capture both linear and nonlinear patterns within the time
series, assesses the effectiveness of residual correction, and
compares the hybrid model ’ s performance with that of
baseline ARIMA models. Key metrics, including Root Mean
Squared Error (RMSE), Mean Absolute Error (MAE), and
the R-squared coefficient, are employed to quantify the
accuracy of the forecasts. The analysis will further explore
the computational efficiency of the proposed model, with a
particular focus on its execution time and practical
applicability in real-world scenarios. By systematically
analyzing these aspects, we aim to demonstrate the
superiority of the hybrid ARIMA-CNN-LSTM model in
achieving higher prediction accuracy and its potential for
improving decision-making in power grid management and
energy planning. The following sections will present the
results obtained from both the ARIMA and CNN-LSTM
components, leading to a comprehensive evaluation of the
integrated model’s performance on the test dataset.

Figure 1. Power Load Time Series Plot.

4.1. ARIMAModel Preliminary Analysis

The ARIMA (AutoRegressive Integrated Moving Average)
model was employed as the initial step in the hybrid
forecasting approach to capture the linear dependencies
within the regional power load time series data. To determine
the optimal parameters for the ARIMA model, the Akaike
Information Criterion (AIC) and Bayesian Information
Criterion (BIC) were utilized. The model with p=3, d=2, and
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q=1 was identified as the best fit, minimizing both AIC and
BIC values, and thus selected for further analysis.
Upon fitting the ARIMA model to the training data,

predictions were generated and compared against the actual
power load values. The initial results demonstrated that while
the ARIMA model successfully captured the overall trend
and linear patterns within the data, it left significant residuals,
indicating the presence of nonlinear dependencies and other
complexities not accounted for by the model. These residuals
were calculated as the difference between the actual values
and the ARIMA predictions and were subsequently used as
inputs for the CNN-LSTM model to address the
shortcomings of the ARIMA approach.

4.2. Residual Correction with CNN-LSTM Model

After generating initial predictions using the ARIMA
model, the residuals—defined as the difference between the
actual power load values and the ARIMA model's predictions
— were used as input for a CNN-LSTM network. This
approach aimed to address the nonlinear dependencies and
temporal complexities that the ARIMA model failed to
capture. The CNN-LSTM model was specifically designed to
correct these residuals, thereby enhancing the overall
accuracy of the power load forecasts.

Table 1. Parameter Settings

Layer Type Parameters
Conv1D Filters: 16, Kernel Size: 2, Activation: ReLU
MaxPooling1D Pool Size: 1
Conv1D Filters: 16, Kernel Size: 2, Activation: ReLU
MaxPooling1D Pool Size: 1
Flatten -
LSTM Units: 50, Activation: Tanh, Return Sequences: True
LSTM Units: 100, Activation: Tanh, Return Sequences: True
LSTM Units: 250, Activation: Tanh, Return Sequences: False
Dropout Rate: 20%
Dense Units: 1

The model was trained on the residual data using the Adam
optimizer, which was chosen for its efficiency and adaptive
learning rate capabilities. The Mean Squared Error (MSE)
was used as the loss function, reflecting the average of the
squared differences between the predicted and actual
residuals.
The training process spanned 100 epochs, with a batch size

of 64. The loss function's evolution over these epochs was
closely monitored, with the loss gradually decreasing,
indicating that the model was effectively learning to correct
the residuals. The final model achieved a significant
reduction in loss, underscoring its capability to refine the
ARIMA predictions and enhance overall forecasting
accuracy.

Figure 2. Loss Curve during CNN-LSTM Training.

The corrected residuals generated by the CNN-LSTM
model were added to the initial ARIMA predictions to
produce the final power load forecasts. These forecasts were
compared against the actual power load values, with the
results demonstrating a marked improvement in accuracy
over the ARIMA model alone. The CNN-LSTM network
effectively captured the complex, nonlinear patterns in the
residuals, leading to more precise and reliable forecasts. This
highlights the model's strength in addressing the limitations
of traditional linear models like ARIMA, particularly in
handling the intricacies of real-world time series data such as
regional power load.

4.3. Final Performance of the Hybrid ARIMA-CNN-LSTM
Model

The final performance of the hybrid ARIMA-CNN-LSTM
model was evaluated using the test dataset to assess its
accuracy in forecasting regional power load. The hybrid
model combined the strengths of both ARIMA and
CNN-LSTM components: ARIMA effectively captured linear
patterns, while the CNN-LSTM model corrected the residuals
left by ARIMA, addressing the nonlinear dependencies and
complex temporal dynamics that the ARIMA model alone
could not capture.
To quantitatively evaluate the model's forecasting accuracy,

three key performance metrics were used:
Root Mean Squared Error (RMSE): This metric provides a

measure of the average magnitude of the forecasting error.
For the hybrid model, the RMSE on the test dataset was
3504.08, indicating the average deviation between the
predicted and actual power load values.
Mean Absolute Error (MAE): The MAE measures the

average absolute differences between the predicted and actual
values, providing a straightforward interpretation of the
model's accuracy. The hybrid model achieved an MAE of
1466.66, highlighting its ability to produce forecasts that are
consistently close to the actual values.
R-squared : The R-squared value represents the proportion

of variance in the dependent variable that is predictable from
the independent variables. An R-squared value of 0.9902 for
the hybrid model indicates that it explains over 99% of the
variability in the power load data, demonstrating a high level
of accuracy and fit to the actual data.
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Figure 3. Hybrid Model Test Set Prediction.

The plot comparing the test set predictions with the actual
power load values showed that the hybrid model closely
followed the trends and fluctuations in the actual data. This
indicates that the model effectively captured both the
short-term and long-term patterns in the power load data.

4.4. Comparison with Baseline Models

When compared to the baseline ARIMA model, the hybrid
ARIMA-CNN-LSTM model showed a marked improvement
across all evaluation metrics:
The RMSE and MAE were significantly lower for the

hybrid model, indicating that it made more accurate
predictions with fewer large errors.
The R-squared value was notably higher for the hybrid

model, underscoring its superior ability to explain the
variability in the power load data.
This comparison highlights the advantages of integrating a

deep learning model like CNN-LSTM with a traditional
statistical model like ARIMA. The CNN-LSTM component
effectively addressed the non-linearities and temporal
dependencies that the ARIMA model could not, resulting in a
comprehensive and highly accurate forecasting model.

5. Conclusions
This study introduced a hybrid ARIMA-CNN-LSTM

model to enhance the accuracy of regional power load
forecasting. By integrating the ARIMA model, which
captures linear trends, with the CNN-LSTM network, which
models nonlinear patterns and temporal dependencies, the
hybrid approach significantly improved forecasting
performance. The model achieved an RMSE of 3504.08, an
MAE of 1466.66, and an R-squared value of 0.9902,
outperforming the standalone ARIMA model. The visual and
quantitative analyses demonstrated that the hybrid model

closely follows actual power load trends, particularly during
fluctuations, making it a reliable tool for energy management
and grid planning. The model ’ s balance between accuracy
and computational efficiency suggests it is well-suited for
real-time forecasting applications. Future work may explore
extending this approach to other time series data and
incorporating additional external factors to further enhance
forecasting accuracy.
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